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particular synapses. Over a dozen candidate toxin recep-
tors have been proposed. AβO binding triggers a redistribu-
tion of critical synaptic proteins and induces hyperactivity 
in metabotropic and ionotropic glutamate receptors. This 
leads to Ca2+ overload and instigates major facets of AD 
neuropathology, including tau hyperphosphorylation, insu-
lin resistance, oxidative stress, and synapse loss. Because 
different species of AβOs have been identified, a remaining 
question is which oligomer is the major pathogenic culprit. 
The possibility has been raised that more than one spe-
cies plays a role. Despite some key unknowns, the clinical 
relevance of AβOs has been established, and new studies 
are beginning to point to co-morbidities such as diabetes 
and hypercholesterolemia as etiological factors. Because 
pathogenic AβOs appear early in the disease, they offer 
appealing targets for therapeutics and diagnostics. Promis-
ing therapeutic strategies include use of CNS insulin sign-
aling enhancers to protect against the presence of toxins 
and elimination of the toxins through use of highly specific 
AβO antibodies. An AD-dependent accumulation of AβOs 
in CSF suggests their potential use as biomarkers and new 
AβO probes are opening the door to brain imaging. Over-
all, current evidence indicates that Aβ oligomers provide 
a substantive molecular basis for the cause, treatment and 
diagnosis of Alzheimer’s disease.
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Abstract  Protein aggregation is common to dozens of 
diseases including prionoses, diabetes, Parkinson’s and 
Alzheimer’s. Over the past 15 years, there has been a para-
digm shift in understanding the structural basis for these 
proteinopathies. Precedent for this shift has come from 
investigation of soluble Aβ oligomers (AβOs), toxins now 
widely regarded as instigating neuron damage leading to 
Alzheimer’s dementia. Toxic AβOs accumulate in AD brain 
and constitute long-lived alternatives to the disease-defining 
Aβ fibrils deposited in amyloid plaques. Key experiments 
using fibril-free AβO solutions demonstrated that while 
Aβ is essential for memory loss, the fibrillar Aβ in amy-
loid deposits is not the agent. The AD-like cellular patholo-
gies induced by AβOs suggest their impact provides a uni-
fying mechanism for AD pathogenesis, explaining why 
early stage disease is specific for memory and accounting 
for major facets of AD neuropathology. Alternative ideas 
for triggering mechanisms are being actively investigated. 
Some research favors insertion of AβOs into membrane, 
while other evidence supports ligand-like accumulation at 
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CNS	� Central nervous system
CSF	� Cerebrospinal fluid
FAD	� Familial Alzheimer’s disease
HMW	� High molecular weight
IDP	� Intrinsically disordered proteins
LMW	� Low molecular weight
LTP	� Long-term potentiation
MAb	� Monoclonal antibody
MCI	� Mild cognitive impairment
MRI	� Magnetic resonance imaging
MW	� Molecular weight
PET	� Positron emission tomography
PrP	� Prion protein
scFv	� Single chain variable fragment

Introduction

Clinical trials for Alzheimer’s disease (AD) that target the 
buildup of amyloid beta (Aβ) have been a lingering disap-
pointment. Lack of success for over a decade has fueled 
misgivings about the therapeutic value of Aβ-related tar-
gets, and even raised questions about whether Aβ pathol-
ogy is the key to nerve cell damage and dementia onset. 
This may, however, be a case of throwing out the prover-
bial baby with the bathwater. More than 30  years’ worth 
of evidence has established the critical involvement of Aβ 
in instigating AD, including the more recent discovery that 
a different type of mutation in APP, one that reduces Aβ 
levels, protects carriers from getting the disease [73]. Clin-
ical failures can be attributed to bad timing, poor drugs, 
and perhaps most importantly, impacting the wrong tar-
gets [157]. Widespread studies since 1998 strongly suggest 

the correct targets comprise toxic amyloid β oligomers 
(AβOs).

Development of the oligomer hypothesis

Although soluble oligomeric Aβ species were detected in 
AD brain tissue more than 20  years ago [42], their pres-
ence was regarded only as evidence of ongoing fibrillogen-
esis and not relevant to nerve cell damage and the onset 
of dementia. However, a different conclusion emerged 
when experimental methods were found that could give 
toxic solutions of Aβ that were fibril-free [131]. Soluble 
AβOs, formed without fibrils using very low doses of Aβ, 
or through the chaperone-like action of clusterin, were dis-
covered to be potent CNS neurotoxins [95]. AβOs rapidly 
inhibited LTP in brain slices, and, with increased exposure, 
they accelerated nerve cell-specific death, through a sign-
aling-dependent mechanism requiring the protein tyrosine 
kinase Fyn. Based on these findings, it was proposed that 
early memory loss in AD and the progressively catastrophic 
dementia were caused by neural signaling dysfunction trig-
gered by soluble AβOs [82, 95].

Over the last decade, the Aβ oligomer hypothesis has 
generated widespread interest, and numerous reviews have 
covered major milestones substantiating its applicability 
to AD [39, 60, 61, 86, 122, 139]. The AβO hypothesis has 
been described as a small conceptual revolution [60] and 
is widely regarded as accounting for the onset of neuron 
damage leading to AD (Fig.  1a). AβOs have been shown 
to build up in AD brain in a manner distinct from amyloid 
plaques [76] and to accumulate in AD animal models [14, 
17]. AβOs from AD brain and synthetic AβOs appear struc-
turally equivalent [47, 76], they disrupt synaptic plasticity 

Fig. 1   Aβ oligomers (AβOs) instigate neuron damage in Alzheimer’s 
disease. a Oligomeric Aβ, rather than insoluble amyloid species, 
instigates neuron damage in AD (adapted from the “2004/2005 Pro-

gress Report on Alzheimer’s disease” Health and Human Services). b 
AD-associated changes attributed to AβOs
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as well as learning and memory when injected into animal 
models [17, 175], their emergence coincides with onset of 
memory dysfunction in Tg models [105], and antibodies 
against AβOs rescue memory performance in those models 
[183, 194]. Mechanistically, AβOs act like pathogenic gain-
of-function ligands, targeting certain cells and synapses 
on those cells [91]. Although structural questions regard-
ing the nature of toxic AβO species still are under rigorous 
investigation [5] and not all oligomers are active [16, 93], it 
has been established that brain-derived and synthetic AβOs 
share similar toxicology [25, 84]. Moreover, as shown in 
Fig.  1a, b, the cellular damage that can be instigated by 
AβOs extends to virtually all major aspects of AD neuropa-
thology. Although not proven, and not uniformly accepted, 
there is a high probability that AβOs play a critical role in 
instigating AD.

Our primary purpose is to focus on recent works and 
review issues being addressed in the current AβO literature. 
Given that over 1,200 articles have appeared in the last 
3 years alone, it is unfortunate but inevitable that important 
works have not been included, and we regret the missed 
opportunities. Due to publication constraints, there is a 
significant amount of information that can be found in the 
supplementary material. Our review is organized according 
to the following themes—AβO etiology; the toxic mecha-
nism; AβO structure and analytics; AβO-directed therapeu-
tics; and AβO-directed diagnostics.

Etiology and mechanism

Why do AβOs show up?

Remarkably little is known about the etiology of AβO 
accumulation in sporadic AD, which accounts for roughly 

95  % of AD cases. A clue to onset may be the peculiar 
distribution of AβOs seen in very early stages of pathol-
ogy (Fig. 2). In a field of hundreds of neurons, only about 
a dozen show the presence of AβOs which, as seen in the 
inset, distribute peri-somatically. If we could understood 
what accounts for this cell-specific and sporadic distribu-
tion, we might have a better handle on the etiology of AβO.

It sometimes is said that AD manifests as multiple dis-
eases. The etiology of AβO buildup may thus involve dis-
parate factors, and in the long run, successful treatment 
might depend on knowing which etiological triggers are 
involved. Current investigations concern factors such as 
pathophysiological co-morbidities, toxic environments, and 
loss of  natural defense mechanisms with aging. Environ-
mental and behavioral factors, including diet choices, will 
be of particular interest because they can be corrected.

While a broader discussion of etiological factors in 
AβO buildup can be found in the supplementary mate-
rial, one rapidly developing area of investigation concerns 
the defense provided by neuronal insulin signaling, and 
the relationship between AβOs, diabetes, and resistance to 
insulin signaling in the AD brain. A detailed review of this 
relationship has recently become available [22]. One side 
of the story centers on defense against AβOs: CNS insulin 
signaling serves to prevent AβO buildup [7] and to block 
AβO neurotoxic binding [23]. The other side of the story 
is the vulnerability of the mechanism itself to AβO toxic-
ity: AβOs impair insulin signal transduction on CNS neu-
rons by blocking trafficking of insulin receptors to dendritic 
membranes [23] and inhibiting the critical effector IRS-1 
[111]. By rendering neurons insulin-resistant, AβOs pro-
vide a mechanism to explain why AD appears to be a Type 3 
diabetes [26, 27]. Consistent with results from cell biology, 
animals given ICV injections of AβOs show impaired brain 
insulin signaling and metabolism along with memory loss 

Fig. 2   Perisomatic AβOs con-
sistent with synapse binding are 
present early in human neuropa-
thology. Left Low magnification 
of human cortical brain section 
stained with an anti-oligomer 
antibody. Scattered individual 
neurons are surrounded by 
AβOs in early AD, before the 
appearance of amyloid plaques. 
The perineuronal distribu-
tion of these AβOs (right) is 
consistent with a binding site 
within the dendritic arbor. Scale 
bar 10 µm. Adapted from Lacor 
et al. [91]
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[57, 135]. This animal model appears to recapitulate insulin 
neuropathology in the AD brain [8]. Overall, a vicious cycle 
emerges. As AβOs increase due to impaired CNS insulin 
signaling, insulin signaling grows even weaker, due to the 
impact of the toxic AβOs (Fig. 3). Furthermore, when insu-
lin receptors are down, GSK3β activity is up, and this may 
be germane to pTau elevation [4]. Decreased CNS insulin 
signaling which appears to occur with age could tip the 
scales toward AβOs in the struggle for synaptic survival. 
The section later on Therapeutics discusses the targeting of 
CNS insulin signaling for AD treatment.

Are AβOs extracellular, intracellular, or both?

A persistent debate is whether AβOs accumulate and insti-
gate neuronal damage extracellularly or intracellularly. The 
answer is especially relevant given that toxicity assays use 
exogenously added AβOs. Persuasive evidence has been 
obtained that supports each view. Subcellular distribution 
of brain AβOs at very early stages of pathology is consist-
ent with extracellular association of AβOs with surface 
membranes (Fig. 2). Direct evidence for extracellular accu-
mulation came from older measurements of AβOs in human 
CSF, which shows increased abundance in AD patients [45] 
(Fig. 4). A suggested prion-like spread of AβOs, while still 
being investigated [155], is consistent with an extracellu-
lar presence, and the buildup of AβOs in the medium of 
APP-transfected cells indicates a capacity for natural AβO 
secretion [17, 175]. The efficacy of antibodies in reduc-
ing pathology [132] and rescuing behavior, even in some 
cases as readily as 24  h [29] further substantiates with 
the  existence of extracellular AβOs. Although antibodies 
can be internalized, this occurs after binding to cell sur-
face epitopes. On the other hand, immunohistochemistry 
of many TG models show robust intracellular accumulation 

of AβOs (see, e.g., Fig.  4), and high-resolution EM stud-
ies of human samples show AβOs intracellularly at syn-
aptic terminals [48]. Although AβOs could assemble from 
extracellular monomers, they also appear to be released 
from intracellular pools [176]. AβOs additionally appear to 
accumulate in AD astrocytes, although the form they take 
is uncertain [96], and it is evident that AβOs are taken up 
by microglia. Older evidence thus indicates that AβOs can 
occur in both intracellular and extracellular pools. The pos-
sibility that these pools undergo a dynamic exchange would 
reconcile both views [132].

Recent evidence for intracellular AβOs

Evidence for intracellular synthesis and uptake of AβOs 
continues to come from studies of human neuropathology 
and transgenic animal models. In human tissue, intracellu-
lar AβOs have been identified in cholinergic neurons, sug-
gesting a role in cholinergic deficiency [128]. In Tg2576 
mice, intraneuronal AβOs are associated with loss of 
MAP2 in dendrites and postsynaptic terminals [162], con-
sistent with a previous report of synaptic pTau. The data 
suggest low MW AβOs precede high MW oligomer and 
plaque formation. Multiple studies suggest that aggrega-
tion and clearance of Aβ are influenced by ApoE isoforms 
[59, 154]. Co-culture and in vivo experiments demonstrate 
that ApoE, secreted by astrocytes, is essential for receptor-
mediated uptake of Aβ by neurons. Results showed that 
a non-toxic ApoE/Aβ interaction antagonist, Aβ12–28P, 
blocked uptake and blocked synapse protein loss. The pep-
tide was also protective in vivo [90].

Recent evidence for extracellular AβOs

In cell culture models, SH-SY5Y,+/− transfected with 
Swedish double mutant APP, showed intracellular 

Fig. 3   Dysfunctional insulin signaling induced by AβOs provides 
one link to AD etiology. Diabetes causes a reduction in brain insu-
lin and brain insulin signaling as well as an increase in glucose and 
lipids. This leads to an increase in Aβ production and a reduction in 
AβO clearance, causing a buildup of oligomers in the brain. As AβO 

levels rise, they bind synapses and cause neuronal damage, resulting 
in a decrease in insulin receptors and further reducing insulin signal-
ing in brain cells. This vicious cycle results in cognitive failure and 
AD
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accumulation of AβO in many membrane-bound orga-
nelles as well as cytosolic structures; further data indi-
cate Aβ does not localize to particular organelles and 
is largely secreted from cells [196]. Overall results are 
consistent with the pool of extracellular AβOs originat-
ing from secreted AβOs as well as a pool that assembles 
from secreted monomer. Especially convincing new evi-
dence for extracellular pools of AβOs comes from micro-
dialysis experiments. Brain interstitial fluid from living 
mice showed an age and transgene-dependent presence of 
AβOs [164]. Acute inhibition of gamma-secretase caused 
AβO abundance to decrease, a key control that AβOs were 
derived from expected metabolic pathways. It has been 
noted in some experimental models (e.g., APP-transfected 
cell lines) that extracellular pools of AβOs are insensitive 
to secretase inhibitors [53]. The acute efficacy of thera-
peutic antibodies further supports the neurological signifi-
cance of extracellular AβOs [29]. Antibodies against oli-
gomers recently were shown to reduce AβOs and plaques 
and improve memory function [163]. Data were consistent 
with earlier conclusions that extracellular and intracellular 
AβO pools are dynamically related, potentially involving 
sortilin, and they also indicated that intracellular accumu-
lation of AβOs is upstream of tau pathology. scFv antibod-
ies against Aβ have been found to readily reach the brain 
following intranasal administration [13], and AβO anti-
bodies delivered through intranasal administration were 

found to rescue performance on the Morris water maze 
paradigm [183].

Extracellular prion‑like spread?

Data that AβOs can accumulate intracellularly and later be 
secreted are consistent with a suggested prion-like propaga-
tion of AβOs (for history of this idea, see [155]). Oligomers 
of other non-prion proteins (e.g., tauOs and synucleinOs) 
also have been reported to show prion-like behavior [55, 
88]. Cell-to-cell transfer of AβOs has been seen using a 
donor–acceptor 3-D co-culture model. Transfer appears 
to be an early event that occurs before and is independ-
ent of cell degeneration [30]. Similar spreading is seen in 
astrocyte–neuron co-cultures where astrocytes are induced 
by endogenous Aβ25–35 to make and secrete Aβ42 [20]. 
Intraneuronal injection of AβOs into primary hippocampal 
neurons revealed neuron-to-neuron transfer that required 
direct cellular connections. Intracellular accumulation 
resulted in tubulin beading and endosomal leakage [127]. 
In vivo injections into the CA1 region of the hippocampus 
resulted in time-dependent effects on the expression levels 
of multiple genes distant from the injection site [34]. With 
respect to the prion-like potential of cell-to-cell transfer, it 
has been found that an unusual oligomeric species, large 
fatty acid-derived AβOs that are 12–18mers and form “off 
pathway”, can recruit Aβ42 at expense of fibril formation 

Fig. 4   AβOs can accumulate in intracellular and extracellular pools. 
Intracellular AβOs are detectable in animal models overproduc-
ing APP and Aβ; however, the presence of extracellular AβOs on 
dendrites and in CSF suggests they are also important in AD. Left 
A representative micrograph of confocal fluorescence labeling of 
amyloid-β peptide (Aβ)-oligomer-specific antibody NU1 immuno-
reaction in young, pre-plaque Tg mice shows intracellular localiza-
tion of AβOs. Adapted from Ferretti et al. [40]. Right A scatter plot 

from the ultrasensitive scanometric detection of AβOs in cerebrospi-
nal fluid. Adapted from Georganopoulou et al. [45]. The response for 
the negative human control subject (brain extract) was similar to that 
observed for the chip control. The data points are averages of several 
separate experiments normalized for each assay based on the highest 
response in a series of runs. The mean values for ADDL concentra-
tions (solid lines) are estimated for each group based on a calibration 
curve
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and self-replicate [89]. Another unusual interaction occurs 
with synuclein, which can interact with Aβ and provide a 
seed for aggregation in vitro [134]. Oligomers were found 
to migrate from affected to unaffected neurons, where it 
was suggested they act as a template to promote formation 
of larger oligomers in a self-propagating manner [133]. Of 
particular interest, pyroglutamylated Aβ, which appears to 
be a pathophysiologically important proteoform, makes 
especially toxic small oligomers when mixed with Aβ42, 
more toxic than made by Aβ42 alone. The mixed AβOs 
show tau-dependent toxicity, and they act as a template for 
restructuring of Aβ42 into distinct small MW AβOs that 
propagate in prion-like manner [129].

Targeting synapses

If extracellular pools of AβOs are neurologically active, a 
key mechanistic question is whether they act with speci-
ficity—are particular cells targeted, and if so, how? Early 
studies showed that AβOs bind only to particular neurons, 
at most half those present in hippocampal cultures [16, 97]. 
Less binding occurs in cortical cultures and little to none 
in cerebellar cultures [97]. This pattern is in harmony with 
the region-dependent AβO toxicity seen in brain slice prep-
arations [80]. Cell-specific binding correlates with toxic 
responses, e.g., stimulation of tau hyperphosphorylation 
[25].

Significantly, exogenous AβOs accumulate at synapses 
and in particular, at synaptic spines [47, 91], although pre-
synaptic sites may also be targeted [62]. The ligand-like 

targeting of synapses is evident for both synthetic and 
brain-derived AβOs (Fig. 5). While additional targets may 
exist, this highly selective distribution is in harmony with 
rapid AβO-induced disruption of LTP and LTD [175, 177]. 
To account for the specificity of AβO targeting, it has been 
proposed that attachment is mediated by particular cell sur-
face proteins that act as toxin receptors [95]. These recep-
tors would be expressed only on certain cells and would act 
to convert binding into cell-damaging responses. This sec-
tion reviews recent evidence regarding the toxin receptor 
hypothesis and the molecules that have been proposed as 
candidate receptors. How transduction of binding into tox-
icity takes place is considered in the next section.

Membrane proteins

The hunt for toxin receptors has been greatly invigorated 
by identification of cellular prion protein as a receptor can-
didate, first identified in a screen of a cDNA expression 
library [101]. Initial evidence strongly indicated binding to 
PrP was a key step in the mechanism of AβO toxicity [101] 
(for review, see [100]). Investigations of how externally 
oriented PrP might bring about intracellular damage indi-
cate coupling to the protein tyrosine kinase Fyn (Fig.  6). 
This mechanism is consistent with early studies showing 
Fyn is essential for AβO-induced toxicity [15, 95]. Further 
details regarding AβO interactions with PrP, which remains 
somewhat controversial, can be found in the supplementary 
material.

A number of alternatives to PrP as AβO toxin receptors 
have emerged, giving what appears to be an oversupply of 

Fig. 5   Synthetic and brain-derived AβOs are ligands that target syn-
apses. AβOs extracted from AD brain or prepared in vitro show punc-
tate binding to neuronal cell surface proteins. Cultured hippocam-
pal neurons were incubated with synthetic AβOs or soluble extracts 
of human brain. Binding was visualized by immunofluorescence 
microscopy by using a polyclonal anti-Aβ oligomer antibody, M93. 

Synthetic AβOs (Left), soluble extracts of non-AD control brains 
(Center), and soluble AD-brain extracts (Right) are shown. Small 
puncta, bound largely along neurites, are evident for AD extracts and 
synthetic AβOs but not for control extracts. Bar 10 µm. Adapted from 
Gong et al. [47]
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candidates (Fig. 7). Several prominent candidates are dis-
cussed further in the supplementary material. Some of the 
apparent oversupply may be due to involvement of candi-
dates in responses to alternative forms of AβOs (next sec-
tion; and see review by De Strooper [5]). It also may be 
that AβOs are promiscuous ligands, capable of interacting 
with different proteins expressed by different cells. Addi-
tionally, some candidates may have come from studies of 
AβO–membrane protein interactions that are significant but 
not as toxin receptors. Multiples types of AβO–membrane 
protein interactions can be envisioned. (1) AβOs could 
uniquely attach to one or a small set of high-affinity bind-
ing proteins that act as specific toxin receptors. (2) AβOs 
could attach to a variety of low-affinity toxin receptors and 
associate subsequently with co-receptors to create a multi-
component high-affinity complex. (3) AβOs, attached to a 
toxin receptor or embedded within a complex, disrupt addi-
tional membrane proteins, whose downstream actions are 
key to neuronal damage.

Membrane lipids

A prominent alternative to the receptor hypothesis is that 
AβOs insert directly into the lipid bilayer and disrupt 
membranes by acting as a pore [3, 76]. Much of the early 
support for this hypothesis came from experiments using 
artificial lipid bilayers. Structural consequences recently 
have been imaged by AFM, showing damage to POPC/
POPS lipid bilayers caused by Aβ40 in different aggrega-
tion states [12]. A study examining the aggregation and 
lipid interaction properties of Aβ peptide fragments aggre-
gated in the absence or presence of total brain lipid extract 
bilayers showed that some regions interact with and disrupt 
bilayers (e.g., Aβ40) but others do not aggregate or inter-
act with bilayers (e.g., Aβ28 and Aβ12–24) [186]. Some 
reports suggest that oligomers have more membrane affin-
ity than monomers. This is evident in assays of non-neu-
ronal as well as neuronal cells, suggesting that association 
in this assay is not receptor-dependent. AβO binding did 
not produce evidence of rapid cell damage [152]. Mem-
brane insertion can be blocked by a pentapeptide from the 
glycine zipper region of the C-terminal of Aβ. This peptide 
abolishes synaptotoxicity [137]. Formation of an annular 
octameric channel of Aβ22–35, which induces a zinc-sen-
sitive Ca2+ influx, is enhanced by cholesterol [28], con-
sistent with a possible lipid raft association. Support for 
raft domains as primary mediators of Aβ toxicity in AD 
comes from a study showing that rafts recruit AβOs and 
that depletion of GM1 blocks interaction of AβOs and their 
toxicity [37]. On the other hand, data suggest that a moder-
ate increase in membrane cholesterol content may be pro-
tective against AβO toxicity [38]. The extensive literature 
concerning Aβ-lipid membrane interactions and molecular 

Fig. 6   Model for Aβ oligomer-induced synaptic dysfunction involv-
ing PrPc and Fyn. Extracellular Aβ monomer, produced through 
cleavage of the amyloid precursor protein (APP) by both β- and 
γ-secretase, assembles into toxic Aβ oligomers. These AβOs bind to 
cellular prion protein (PrPC) and activate Fyn tyrosine kinase, possi-
bly through a yet to be identified transmembrane protein. AβO activa-
tion of Fyn signaling drives the tyrosine phosphorylation of NMDA 
receptors, which in turn produces altered surface expression, dysregu-
lation of receptor function, excitotoxicity and dendritic spine retrac-
tion. Adapted from Um and Strittmatter [170]

Fig. 7   A surfeit of toxin receptor candidates. Provided is a current 
list of candidate Aβ/Aβ oligomer receptors that have been proposed 
over the last 20 years. No single candidate has been shown to be nec-
essary and sufficient to account for all aspects of AβO binding and 
toxicity
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level membrane modeling has recently been reviewed [32], 
including the possible involvement of metals in the mecha-
nism [179].

One of the difficulties encountered by the bilayer 
hypothesis for AβO attachment is its inability to account 
for specificity. Two neurons side-by-side can show com-
pletely different ability to accumulate AβOs, one showing 
robust synaptic accumulation and the other showing virtu-
ally none [91]. Toxicity, measured by tau hyperphosphoryl-
ation, correlates with binding [91]. A second difficulty is an 
inability to account for binding saturability [91, 174]. It is 
possible, however, that rather than lipid bilayers, lipid rafts 
specific to particular synapses might play a role. It also 
has been hypothesized that AβOs act through both lipids 
and proteins, forming pores at the membrane surface and 
binding as well to specific receptors to induce intracellular 
responses [69].

Transduction mechanism

How the initial attachment of AβOs to neuronal mem-
branes is transduced to instigate a toxic cascade is uncer-
tain. A simple explanation would be that AβOs are intrinsi-
cally toxic. It has long been suggested, e.g., that Aβ and 
its assemblies could instigate neuronal damage by chemi-
cally generating ROS [11], and such localized ROS gen-
eration is supported by recent studies as well (e.g., [126]). 
AβOs also appear capable of creating neurotoxic pores 
within membranes [3], with current observations continu-
ing to support this concept [28, 99, 140]. However, obser-
vations that neurons show highly selective vulnerability 

to AβO binding and toxicity [91] seem more consistent 
with indirect mechanisms. Such mechanisms, building on 
the toxin receptor hypothesis, attribute AβO toxicity to 
agonist-like actions in which AβOs perturb vital signaling 
pathways. Although some evidence indicates intracellular 
AβOs could be responsible for elevated Ca2+, a critical 
link has been established between elevated ROS and AβO-
stimulated Ca2+ through pathways involving metabotropic 
as well as ionotropic glutamate receptors (see supplemen-
tary material).

Protein redistribution: toxic highjacking

A significant mechanistic puzzle is how glutamate recep-
tors are actually stimulated by AβOs. Hypothetically, AβOs 
might act as simple receptor agonists. The phenomenon, 
however, is clearly more complex, beginning with binding. 
Experiments have been done that track movements of indi-
vidual, quantum dot-labeled AβO molecules on surfaces of 
live neurons [143]. At first, surface-attached AβOs move 
freely, but after a few minutes they become immobile, often 
at synapses (Fig. 8). Significantly, mGluR5 receptors also 
become immobilized. The AβOs and mGluR5s become 
co-clustered, and these clusters show a time-dependent 
increase in size. Hypothetically, this “receptor highjacking” 
could be a critical part of the transduction mechanism that 
leads to mGluR5 hyperactivity and excessive Ca2+ mobili-
zation. This is strongly supported by experiments showing 
that crosslinking and clustering of mGluR5s by antibodies 
mimics the effects of AβOs. Immobilization of AβOs has 
been confirmed in recent single molecule tracking experi-
ments [72, 125]. Interestingly, association of AβOs with the 

Fig. 8   Single molecule trafficking shows AβOs stop diffusion of 
mGluR5 and “highjack” membrane proteins that can lead to elevated 
Ca2+. Left panels Dual-color single-particle tracking was used to 
monitor mGluR5 (red) and biotin-AβO (green) diffusion at syn-
apses over time. Following the tracings of mGluR5, mGluR5 diffuses 
together with an AβO (5 min) outside synapses before both become 

stabilized at a synaptic site (60  min). Adapted from Renner et  al. 
[143]. Right Clustering of membrane proteins, possibly involving 
PrPc, leads to AβO binding recruitment and membrane receptor reor-
ganization that instigates toxic signaling. AβO binding to an unidenti-
fied receptor, X, and the recruitment of effector protein co-receptors 
leads to hyperactive Ca2+ signaling and downstream toxicity
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surface was blocked by the presence of ATP-independent 
chaperones.

An interesting question is how PrP fits as a piece of the 
puzzle. PrPs and mGluR5s appear to be partners in at least 
some aspects of AβO toxicity [170]. It is known that PrP 
abundance increases at the surface in response to AβOs [6]. 
Whether the anchoring of mGluR5s leads to a magnet-like 
redistribution of PrPs is possible but unknown. The abil-
ity of PrP to organize membrane domains [6, 151] may 
play a role, with lateral interactions involving a number of 
proteins that come together to create a potential toxicity 
domain (Fig.  8). This scaffolding effect can be construed 
as analogous to formation of focal contacts, but with patho-
genic consequences when AβOs become attached. Not only 
Ca2+ but cAMP levels [24, 156] could be disrupted. It is 
intriguing that once neurons have reached a fully differenti-
ated state, PrP can enzymatically be removed with little or 
no impact on AβO accumulation in hot spots and synapses 
[180].

The current bottom line is that only little is known about 
how attachment of AβOs to neurons and other brain cells is 
transduced into pathogenic signaling. On the other hand, a 
wealth of information exists regarding a more straightfor-
ward question—what happens downstream from the initial 
transduction event? A prominent example is the upstream 

role of AβOs in instigating tau pathology. As recently 
demonstrated, tau hyperphosphorylation and mis-sorting 
induced by AβOs is a significant factor in generating dis-
eased neurons (Fig. 9). This pathway and others are consid-
ered in detail in the Supplementary Material.

Structure

Which forms of AβOs are responsible for instigating 
AD nerve cell damage is a question of continuing inter-
est [5]. Aβ assembly pathways lead to different outcomes 
(Fig. 10), and this also is true for assembly pathways that 
lead to AβOs. As found a decade ago in vitro [16] and in 
vivo [105], not all AβOs are toxic or neurologically active. 
Overall, the goal is to obtain structure for native, undena-
tured disease-relevant AβO species obtained under patho-
physiological conditions.

Recent studies have substantiated the influence of 
structure on oligomer cytotoxicity [161], which is con-
sistent with the specificity of action discussed above. Aβ 
is a member of the class of proteins known as intrinsi-
cally disordered proteins (IDPs)—proteins that lack a sta-
ble tertiary structure in physiological conditions [60], and 
Aβ conformation is highly dependent on its environment 

Fig. 9   AβOs cause pathological tau redistribution. AβOs (ADDLs) 
induce missorting of Tau and neurofilaments into the somatodendritic 
compartment of primary hippocampal neurons that suggests a mecha-
nism for AD nerve cell death. Left, top There is no colocalization of 
Tau and MAP2 in vehicle-treated control cells. Tau is predominantly 
localized to the axonal compartment (antibody K9JA—green), while 
MAP2 is localized to the somatodendritic compartment (antibody 
AP20—red). Left, bottom In ADDL-treated cells (5 μM for 3 h), Tau 

is redistributed into soma and dendrites (green), where it colocalizes 
with MAP2 (red). Arrows indicate colocalization of MAP2 and Tau. 
Adapted from Zempel et al. [191]. Right Data suggest a mechanism 
for AD neuronal cell death that involves AβO-induced breakdown 
of Tau sorting and neuronal polarity. Aβ induces missorting of Tau, 
which in turn leads to a loss of microtubules, impaired trafficking 
(e.g., of mitochondria), and loss of spines, ultimately leading to neu-
ronal death. Adapted from Zempel and Mandelkow [190]
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[85]. Equilibrium is constantly being reestablished, mak-
ing it extremely difficult to discern the sizes and abundance 
of each oligomer present [60, 106]. Methodology itself, 
including both preparative and analytical methods, influ-
ences the outcome. It is difficult to investigate AβOs under 
pathophysiologically relevant conditions, which themselves 
are hard to define. Previous investigations often used con-
ditions that alter structure (such as incubations in SDS) or 
employed insensitive analytical methods requiring high 
levels of AβOs, at concentrations that influence structure. 
Supplementary material accompanying this article gives an 
overview of recent approaches that may be more promis-
ing (preparations; immunochemical detection; biochemical 
analytics; mass spectroscopy; NMR; imaging; X-ray anal-
ysis; and molecular dynamic modeling). Comprehensive 
reviews of AβO methodology are available and described 
in the supplementary material.

Several articles provide up-to-date overviews of oli-
gomeric structures [5, 60, 77]. Although a bit simplistic, 
species have been classified by size (low-n oligomers, 
2–4mers; high-n oligomers ~12–48mers; and megamers, 
indefinitely large in size) and by shape (globular, prefibril-
lar, and annular). It remains uncertain if there is one species 
of oligomer that uniquely provides a molecular basis for the 
cause, treatment and diagnosis of AD or whether multiple 
species are involved. An interesting recent study suggests 
the latter [41]. In this study, synthetic AβOs were sepa-
rated into low molecular weight (LMW) and high molecu-
lar weight (HMW) species. Injected into brain, LMW oli-
gomers induced a rapid, persistent impairment of memory 
associated with decreased hippocampal synaptophysin and 
GluN2B. HMW oligomers induced reversible memory 
impairment associated with induced oxidative stress but not 

synapse pathology. Memantine protected against the effects 
induced by the HMW oligomers, but not against the LMW 
oligomer. Although not in agreement with earlier findings 
from cell biology [92], which concluded that HMW AβOs 
caused synaptic damage, the findings move the field closer 
to the goal of reconciling differing observations concerning 
structure and function. Various aspects of AβO structure 
recently under investigation are considered below as well 
as in the supplementary material.

Submolecular domains

A number of studies have investigated domains within the 
sequence of Aβ for their contributions to structure. Smaller 
AβOs (1–2 nm in size) are highly immunogenic, more so 
than larger oligomers, because of the exposed nature of 
their N-terminal [21]. Epitope mapping shows the N-ter-
minus to be immunodominant for MAb production. The 
N-terminal tail (residues 1–9) of Aβ 40 oligomers, inves-
tigated by rapid fluorescence technology and 2-dimen-
sional solid state NMR, also shows great influence over 
the affinity of oligomers for membranes; the turn region 
(residues 22–29) additionally influences membrane asso-
ciation. Notably, 10 of 11 FAD Aβ mutants map to these 
two regions [153]. A toxic turn at positions 22, 23 has been 
related to the ER stress marker GRP78 [160] and poten-
tially is associated with ROS generation [65]. The nearby 
Gly25-Ser26 dipeptide, studied using synthetically modi-
fied Aβ peptide, appears critical for Aβ42 oligomerization 
[149, 150]. Comparison of toxic and non-toxic AβOs indi-
cates toxicity increases with the extent of solvent expo-
sure of two hydrophobic domains (aa 16–22 and 30–42), 
reflecting the importance of conformation in toxicity [93]. 

Fig. 10   Diverse structural outcomes from different aggregation pro-
tocols. AFM images revealing a spectrum of Aβ structures are shown. 
a Fibrils: Aβ1–42 aged in ddH2O for one week contains periodic and 
smooth fibrils throughout the field of diverse sizes and lengths. b 
Rings: Aβ1–42 aged in F12 at 37 °C for 24 h and not centrifuged con-
tains many ring-like structures and a few short linear protofibrils. c 

AβOs/protofibrils: Aβ1–42 aged in PBS for 48 h at RT contains many 
linear protofibrillar structures and small, spherical structures. Protofi-
brillar structures appear to contain bead-by-bead assemblies of mul-
tiple globular structures. The results suggest that temperature and 
chemical environment are critical during Aβ aggregation. Scale bar 
400 nm. From Chromy et al. [16]
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Computational models indicate the hydrophobic surfaces of 
pore-forming AβOs promote insertion into membrane [70], 
while modeling and experimental studies indicate a C-Ter-
minal turn at Val36-Gly37 (present in Aβ42, not Aβ40) pro-
motes β-pleated sheet formation, rather than the coil seen 
in Aβ40 [150]. The importance of the beta-pleated sheet is 
indicated by the ability of the breaker peptide KLVFFK(6) 
to inhibit AβO formation at substoichiometric doses [193]. 
β-sheets that are antiparallel are evident in toxic Aβ42Os 
examined by X-ray diffraction [52], and these, when incu-
bated with an abiotic cyclic d,l-α-peptide, are converted to 
a non-toxic parallel β-structure [145]. Formation of toxic 
beta sheet-rich AβOs is enhanced when monomeric Aβ40 
inserts into cell surface membranes, which can be pre-
vented by interactions with curcumin, a treatment that pre-
vents the toxic effects of Ca2+ influx [166]

Two major studies have emphasized the importance of 
out-of-register beta sheets [cylindrins]. These are formed 
from six antiparallel Aβ protein strands, as seen via X-ray-
derived atomic analysis [94]. It has been suggested that 
cylindrins might be part of a toxic amyloid pathway that is 
distinct and more energetically favored than the in-register 
amyloid pathway [109].

Exogenous factors influencing oligomerization

The discovery that oligomeric Aβ can be a potent CNS 
neurotoxin arose from studies of the interaction between 
Aβ and the chaperone-like action of clusterin/apoJ [95]. 
Interactions with other proteins are now under study. Inter-
estingly, PrP acts similarly to apoJ. At a substoichiometric 
1/20 ratio, PrP traps Aβ in an oligomeric form and inhibits 
fibril formation. The AβOs are in an antiparallel beta sheet 
conformation, unlike fibrils, and bind an AβO-specific 
antibody. The Aβ binding site involves aa 95–113 of PrP 
[187]. It also has been suggested that transglutaminase (Tg) 
could play a role in the initiation and development of Aβ 
aggregates [181]. Some protein interactions appear protec-
tive. α-Synuclein, e.g., decreases Aβ42 oligomers and also 
is neuroprotective by stimulating the PI3K/Act cell survival 
pathway [144].

A significant interaction takes place between Aβ and 
Aβ fibrils themselves [18]. A kinetic study using selective 
radiolabeling and cell viability assays has found that AβOs 
form following critical accumulation of amyloid fibrils. 
The fibrils catalyze a secondary nucleation reaction which 
gives rise to the toxic AβOs. Formation of toxic AβOs from 
monomers through a fibril-catalyzed secondary nucleation 
reaction thus couples growth of insoluble amyloid fibrils 
to the generation of diffusible oligomers. This mechanism 
is consistent with the halos of AβOs surrounding dense 
core plaques. The possibility exists that AβO deposits in 
the brain at loci that lack associated Thioflavin S (thioS) 

reactivity nonetheless contain trace amounts of fibrillar 
amyloid [87, 174]. An implication of this fibril-catalyzed 
mechanism is that perturbation of the secondary nuclea-
tion pathway could be an effective strategy to control the 
proliferation of neurotoxic Aβ42 oligomers. These findings 
are intriguing in light of the correlation between AβOs and 
amyloid plaques in cognitively impaired but not in cogni-
tively normal individuals [36].

Divergence of assembly pathways

An emerging concept is that self-association of Aβ pro-
ceeds along divergent paths, one toward oligomers and the 
other toward fibrils [173, 189]. Biophysical analysis shows 
there are structural similarities and differences between 
AβOs and fibrils and that, while common β-strand confor-
mations form early, oligomers and fibrils differ in schemes 
of intermolecular organization [165]. The kinetics of fibril 
formation suggests three phases: early oligomerization, 
an intermediate phase, and growth, with conformational 
change a key rate-limiting step [44]. The conformation of 
protofibrillar intermediates may be kinetically stable [51]. 
Existence of pathway differences between oligomer and 
fibril formation has been suggested from experiments using 
small organofluorine compounds to disrupt Aβ self-assem-
bly [167]. Also, in addition to secondary nucleation, AβO 
formation can occur through a nucleated polymerization, 
consistent with alternative assembly pathways; the form 
with a toxic turn at aa22–23 appears early in AD, prior to 
memory loss [160]. Generation of two types of AβOs was 
further indicated by results with oligomer-specific mono-
clonal antibodies, which reduced plaque load, tau phospho-
rylation, and behavior deficits [142]. Dual assembly path-
ways giving extended versus compact oligomers of Aβ40 
were found to be influenced by metal ions, which stabi-
lized the compact form [159]. Different conformations for 
assemblies of Aβ15–23 peptides were found to depend on 
the method of analysis [71], while diversity of Aβ dimers 
results in dual pathways that lead to annular oligomers or 
fibrils [168].

Divergence of assembly pathways begins virtually as 
soon as Aβ is put in solution, and the initial products are 
separable after only several minutes [173]. Fractionation in 
detergent-free buffer shows that AβOs greater than 50 kDa 
maintain their oligomeric state with continued incubation, 
while smaller AβOs show a propensity to form large aggre-
gates and fibrils. Significantly, examined by SDS-PAGE, 
the early stage large and small AβOs are indistinguishable, 
underscoring the importance of analytics carried out under 
conditions that preserve native, pathophysiologically rel-
evant structure. It is interesting that subpopulations are evi-
dent even within the larger AβOs. scFv antibodies target a 
small subset of AβOs that prominently attach to synapses. 
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Polymorphic oligomerization may be a general phenom-
enon, as alpha-synuclein under conditions that promote 
amyloid fibril formation generates two well-defined oligo-
meric species [110]. In analogy with prion species, these 
different α-synuclein oligomers have been referred to as 
strains [54].

Therapeutics

A recent review has laid out the case for exploiting AβOs 
as therapeutic targets [61]. The failure of clinical trials 
that have targeted Aβ in general do not negate the value of 
approaches that target AβOs in particular. Whether AβOs 
are present and have a physiological role in normal brain 
is not known, but it appears worthwhile to prevent dam-
age caused by excessive AβO levels. In animal models, 
when AβO levels are brought down, normal behavior goes 
up [104]. While targeting AβOs seems a rational strat-
egy, there may be no single silver bullet, and what may be 
required, given the difficulties in contending with AβO tox-
icity [148], are combinatorial approaches. Different treat-
ments, moreover, may be needed to contend with different 
etiologies. AβOs instigated by diabetes may require differ-
ent treatments than those instigated by mechanical injury 
or hypercholesterolemia. Recent discovery efforts consid-
ered below concern vaccines that target AβOs, on target-
ing the relationship between AβOs, toxin receptor antago-
nists, inflammation and insulin signaling, and on intriguing 
findings from behavior modification. Overall, there is an 
extensive effort underway to find the means to prevent 
AβO-induced brain damage. The supplementary material 
summarizes recent attempts to identify natural products 
and small organic molecules that block accumulation or 
counter the effects of toxic AβOs.

Immunotherapy—AβO antibodies

Two of the most prominent Alzheimer’s therapeutic anti-
bodies tested to date have been disappointing, but they 
are not selective for AβOs. Solanezumab, derived from 
the murine antibody 266, has high preferential affinity for 
monomer [158]. Removing the precursor to Aβ-derived 
toxins would require more antibody than targeting the 
toxins themselves, but modest benefits have nonetheless 
appeared in the latest analysis [98, 108]. Bapineuzumab, 
which does bind AβOs and has low affinity for monomers, 
also attaches to amyloid fibrils [78]. Off-target specifici-
ties may account for lack of efficacy of each, and also the 
micro-hemorrhages caused by bapineuzumab, which can 
bind vascular amyloid.

Given the promise yet disappointment of Aβ vaccines 
designed to eliminate amyloid plaques, there have been 

efforts to obtain antibodies selective for AβOs [75, 96, 
102]. The value of AβOs as targets for immunotherapy 
and the status of clinical candidates have been recently 
reviewed [49, 124]. Although a caveat has suggested that 
antibodies bound to AβOs might activate microglia and 
potentiate AβO neurotoxicity [120], such toxicity is not in 
harmony with numerous reports of neuroprotection [49]. 
With respect to safety, an IgG4 antibody against Aβ coun-
ters the impact of AβOs in animal models more safely than 
IgG1 antibodies, and it shows no vasogenic edema in phase 
I clinical trials [1] AβOs exist in forms that assemble into 
fibrils and those that do not, and these forms can be dis-
tinguished by antibodies [75]. In animal models, antibod-
ies that target non-fibrillar AβOs improve behavior and also 
reduce the amyloid load [142], consistent with a dynamic 
equilibrium between AβO and amyloid plaques. These 
antibodies reduce tau pathology, also seen earlier with 
the broader-based A11 oligomer antibody [132]. Another 
AβO antibody (72D9) sequestered both extracellular and 
intraneuronal AβOs [115]. Sequestering AβOs in older Tg 
mice attenuates synapse loss near plaques and abolishes 
loss further away [31]. This location-dependent efficacy is 
consistent with the proposed capacity of plaques to act as 
a reservoir that releases AβOs [86]. In a new approach for 
delivery, AβO antibodies have been administered intrana-
sally, which was found to rescue Morris water maze per-
formance [183]. The therapeutic potential of oligomer-spe-
cific monoclonal antibodies for AD therapeutics has led to 
development of humanized forms. An antibody described 
as targeting protofibrillar AβOs, promoted by the Arc-
tic mutation [74], reduced AβOs in the brains and CSF of 
the mouse model with no impact on Aβ monomers [169]. 
The humanized version (BAN2401) has obtained favora-
ble safety profile in Phase 1 clinical trials. The recently 
described humanized mAb ACU-193 has high affinity for 
AβOs with very low affinity for monomers and fibrils [49, 
61]. Although effective in model systems, ACU-193 has not 
been tested in humans.

Single chain antibodies have been identified that target 
AβOs with great specificity [178]. One human scFv, spe-
cific for a small subset of synthetic AβOs [173], greatly 
reduces AβO binding to synapses despite targeting a negli-
gible fraction of the total AβO pool. Another AβO-specific 
scFv (h3D6), given in a single intraperitoneal injection to 
an AD mouse, was found to reduce behavioral deficits [46]. 
These studies also showed that h3D6 reduced AβO levels 
in cortex and olfactory bulb but not hippocampus, although 
it is possible that hippocampal AβOs were neutralized but 
not eliminated, and reduced nerve cell death in cerebellum. 
Methods to prepare human Fab phage display libraries and 
screen for AβO-specific antibodies have been described 
[188]. Recent developments regarding active vaccines and 
autoantibodies are presented in the supplementary material.
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Toxin receptor antagonists

As discussed above, the identity of AβO toxin receptors is 
uncertain, but even without definitive receptor identifica-
tion, it is possible to screen for antagonists using unbiased 
binding assays. A cell-based assay led to a small organic 
molecule blocker of AβO binding with potential therapeu-
tic value [66, 67]. The antagonist appears to target Sigma2/
PGRMC1 receptors and it blocks AβO binding and syn-
aptotoxicity. Another unbiased high-throughput screening 
approach, which uses detergent-extracted synaptic mem-
brane proteins reconstituted in soluble nanoscale mem-
branes, has also shown that small organic molecules can 
block the protein–protein interactions between AβOs and 
their receptors (Fig. 11). Interestingly, the AβO antagonist 
had previously been found to rescue performance in an AD 
mouse model, although its relation to AβOs had not been 
determined [103].

Insulin signaling and TNF‑α

The relationship between AβOs and impaired brain insulin 
signaling, although complex (Fig. 3) has helped stimulate 
efforts to enhance brain insulin signaling for therapeutics. 
Interest in this possibility already was kindled by ear-
lier work, and clinical trials using intranasal insulin have 
shown indications of positive benefits [19]. Because AβOs 
themselves can impair insulin receptor function [23], indi-
rect approaches also are being explored. The diabetes drug 
rosiglitazone, which lowers AβO binding in culture [23], 
has been found to rescue synapses and plasticity in vivo 
via a PPAR gamma pathway [184]. Use of d-chiro-inositol, 
which also enhances insulin signaling and is now available 
as an over-the-counter product, also prevents AβO binding 
[138]. Exendin, an analog of GLP-1 that can substitute for 
direct insulin signaling, has been shown to have major ben-
eficial effects in multiple preclinical models [8, 111]. Lira-
glutide, another analog of GLP-1 that reduces AβO impact, 
is now in clinical trials [117].

An interesting development is the apparent involvement 
of TNFα as an effector of AβO toxicity, making this inflam-
matory agent a potentially valuable therapeutic target [111]. 
AD patients show elevated TNFα in cortex, hippocampus 
and CSF. Sequestering TNFα was earlier reported to be 
beneficial to AD patients [50], and, although this approach 
has not been pursued in the clinic, evidence from AD mouse 
models suggests potential efficacy [68, 116]. An AD model 
was found to manifest high levels of TNFα at an early age, 
when AβOs were present but plaques had not yet formed 
[43]. Chronic treatment with small molecule inhibitors of 
TNFα improved working memory performance and brought 
about reduced brain levels of TNFα mRNA and protein. In 
culture, exposure of microglia to AβOs leads to increases in 

TNFα, along with other inflammatory factors [79]. Done-
pezil surprisingly suppresses these cellular responses, and in 
AβO-injected mice, it inhibits gliosis and rescues memory 
function. Curcumin, an ingredient in turmeric that is neu-
roprotective against AβOs in various models [185], can act 
to block TNFα action and production [2]. Another natural 
product found in ginger (6-shogaol) reduces glial cell acti-
vation and memory impairment in AβO-injected mice [119]. 
Mechanistically, TNFα has been identified as critical to 
AβO-induced insulin resistance, which manifests in IRS-1 
inhibition [111] as well as impaired insulin receptor traf-
ficking and surface down-regulation [23, 195]. Two down-
stream mediators of TNFα have been identified—dsRNA-
dependent protein kinase (PKR) and eukaryotic translation 
initiation factor 2alpha (eIF2α-P), which is phosphorylated 
by PKR [111]. Both effectors of TNFα are elevated in AD 
brains and in AD animal models, including monkeys given 
AβOs by icv injections. AβO coupling to eIF2α-P and cog-
nitive impairment is lost in PKR(−/−) and TNFR1(−/−) 
mice, establishing that proinflammatory signaling mediates 
AβO-induced IRS-1 inhibition and PKR-dependent synapse 
and memory loss.

Diet, exercise and enriched environments

Slowing the onset and progression of AβO pathogenesis by 
behavioral modifications (e.g., changes in diet, exercise or 
environmental richness) presents an intriguing supplement 
to pharmaceutical approaches. Several articles above indi-
cate diets rich in compounds such as DHA, curcumin, and 
ginger would be of value, while diets high in fats or choles-
terol would be harmful, fostering AβO accumulation [172]. 
Effects of diet on cognitive aging have been studied in car-
nivores, which develop cognitive decline and progressive 
accumulation of oxidative damage with age. When main-
tained on an antioxidant diet that includes fruits and veg-
etables, aged animals show cognitive improvement associ-
ated with improved mitochondrial function. Whether such 
diets benefit non-carnivores such as rabbits, which develop 
AβOs in response to diabetes [7], is not known.

Exercise increases BDNF levels [64], which are 
decreased by AβOs [136]. The overall effects of exercise are 
complex, especially the relationship between exercise and 
diet. High-fat diet worsens cognitive function in amyloid 
precursor protein (APP) transgenic mice, but exercise low-
ers Aβ deposition and memory deficit [112]. Exercise in an 
enriched environment rescues diet-induced Aβ deposition 
and memory deficit; however, consumption of a high-fat 
diet after 10 weeks of exercise reversed the benefits, lead-
ing to increased levels of AβOs and impaired memory per-
formance. In aging humans, there is a correlation between 
reduced onset of AD and elevated blood oxygen, and this 
may likely be a consequence of the effects of exercise [10].
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Intriguingly, enriched environments rescue cognitive 
function in animal models, a consequence separate from the 
effects of exercise [107]. The physiology involves enhanced 

long-term potentiation through activation of beta2-adren-
ergic receptors and cAMP/PKA signaling. This signaling 
prevented inhibition of LTP by human brain-derived AβOs. 

Fig. 11   Capture of receptors 
for Aβ oligomers in nanodiscs 
and a high-throughput assay to 
screen for unknown thera-
peutic targets. Top Schematic 
of Nanodisc formation using 
synaptic plasma membranes. 
Each Nanodisc consists of a 
discoidal lipid bilayer stabilized 
by artificial membrane scaffold 
proteins (MSP) with His tags. A 
small fraction of the population 
contains AβO-binding proteins. 
His tags on Nanodiscs and 
biotin on AβOs provide a means 
for conducting binding assays. 
Bottom Aurin tricarboxylic acid 
(ATA) potently reduces synaptic 
AβO accumulation in culture. 
ATA was assayed at 1 µM for 
a preventative effect on AβO 
accumulation at synapses 
in cultured rat hippocampal 
neurons. Images shown are of 
typical neurons after treatment 
with AβOs (left panel) or AβOs 
following ATA pre-treatment 
(right panel). AβOs are shown 
in green, neurons identified 
by β3 tubulin fluorescence are 
white, and DAPI is blue to indi-
cate nuclei. Selected neurites 
are enlarged below each image 
to illustrate the distribution of 
bound AβO. Scale bar 10 µm. 
Adapted from Wilcox et al. 
[180]
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A diet with a beta-adrenergic agonist in lieu of environ-
mental enrichment also was protective. The conclusion that 
enriched environments mitigate AβO synaptotoxicity by 
activating beta-adrenoreceptor signaling substantiates the 
value of cognitive novelty during aging, perhaps in tandem 
with oral beta-adrenergic agonists. At an additional level, it 
has been found that enriched environments increase synthe-
sis of the Aβ-degrading enzyme neprilysin and decreases 
the abundance of brain AβOs, accompanied by an upward 
shift of the cortical excitation/inhibition balance [114].

Combination therapy

AD is a complex and multi-faceted disease with various eti-
ological origins that give rise to various co-morbidities. It 
has been suggested that therapeutic success may therefore 
depend on combination therapies, such as enhanced insulin 
signaling in tandem with AβO-specific vaccines [23]. Com-
bination therapies might even be tailored to etiology—AD 
onset coupled to diabetes might be treated differently than 
onset coupled to high cholesterol. Use of multiple antibod-
ies for immunotherapy also is a possibility. A new antibody 
target that has recently emerged is Dickkopf-1 (Dkk1), a 
secreted Wnt antagonist [141]. Acute treatment of brain 
slices with AβO induces Dkk1, expression of which is ele-
vated in brains of AD patients and in AD transgenic mouse 
models. In brain slices, Dkk1-neutralizing antibodies sup-
press Aβ-induced synapse loss. Roles of TNFα and tau in 
AβO-instigated pathogenesis suggests further that anti-
bodies targeting these effectors, along with those targeting 
AβOs, might significantly enhance outcomes [9, 182].

Diagnostics

There is no single rigorous assay for AD. Current recom-
mendations for diagnosing AD include MMSE evalua-
tions, CSF assays for tau and Aβ, MRI for brain volume, 
and PET scans for Aβ plaques and/or glucose metabolism 
in the brain. When used in various combinations, the tests 
are relatively accurate for diagnosing AD and determining 
disease severity. Given the role of AβOs in pathogenesis, it 
would be of great value to also detect and measure them. 
AβOs accumulate early, perhaps the first indicator of AD 
pathology, so AβO assays would be useful for catching dis-
ease onset [91, 121]. And, because AβOs are instigators of 
critical brain cell damage, their measurement could track 
the efficacy of disease-modifying treatments [174] (for 
reviews see [81, 84]). With new evidence that prefibrillar 
pathological forms of tau can been detected in MCI and 
early AD [123], it may be that combined assays of AβOs 
and tauOs will provide definitive tests of disease onset and 
progression.

CSF assay

New assays have been developed to measure AβOs in CSF, 
extending early efforts that introduced CSF-AβOs as AD 
biomarkers [45, 56]. Results, however, have varied widely. 
CSF-AβOs in AD have been reported to be elevated, 
decreased, unchanged, or not measureable. Nonetheless, 
the positive findings suggest cautious optimism (see details 
in supplementary material). Of particular interest are indi-
cations that AβO assays may detect individuals with MCI 
who have high risk of developing AD. An oligomer anti-
body-based ELISA found that AβO levels were elevated in 
AD that later converted to AD; although the assay showed 
very tight correlation with synthetic AβOs, a large overlap 
between patient groups limits its current diagnostic poten-
tial [63]. Although ELISAs are regarded to be sensitive, the 
requisite limits of detection for CSF assays are likely to be 
more demanding. In assays looking specifically at Aβ trim-
ers and 12-mers (Aβ*56), data indicated that these species 
(both of which increased with age) were elevated in cogni-
tively intact older adults who were at risk for AD [58]. Prior 
to overt symptoms, one or both of the AβOs, but not fibrillar 
Aβ, correlated with tau. This correlation diminished when 
AD advances to symptomatic stage. It also has been reported 
that annular AβOs appear in a small test of presymptomatic 
FAD carriers [146].These findings suggest that ultimately it 
could be possible to prevent progression to AD by knowing 
which AβO species to target in asymptomatic subjects.

Interestingly, the possible use of plasma AβO levels is 
suggested from results of a two-target assay measuring 
AβOs and soluble TNF-R [192]. The large trial assayed 
plasma from 120 controls, 32 amnestic mild cognitive 
impairment (aMCI) patients, and 90 mild AD patients. 
Increases in AβOs and soluble TNF-R levels accurately 
differentiated mild AD patients from control subjects, and 
to some extent from aMCI patients, suggesting intriguing 
potential as diagnostic biomarkers.

Imaging

Precedent for use of brain imaging to detect molecular 
pathology in AD patients has been established by the revo-
lutionary use of PiB to quantify amyloid plaque load [83]. 
While brain damage during onset and progression of AD 
can be assessed by MRI for brain volume and FDG-PET 
for neuronal health, PiB analysis of amyloid plaques has 
been especially encouraging because it establishes prec-
edent for uncovering important molecular pathology long 
before clinical signs of AD [33, 35]. However, it is AβOs 
rather than amyloid plaques that now are considered the 
agents of AD onset.

Approaches to target AβOs and other very early bio-
markers such as tau-Os are beginning to be described. 
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Pronucleon imaging, using engineered peptides that give 
readout when associated with beta-rich fibers, has the abil-
ity to identify plaques throughout the brain of transgenic 
mice in vivo and plaque-like structures in Tg mouse brain 
sections, but it also is regarded as having the potential to 
detect AβOs [130]. A novel PET probe has been introduced 
that combines tracer with specific monoclonal antibod-
ies against Aβ protofibrils. The probe produces a signal in 
AβPP Tg mice that were devoid of Aβ plaques. It locates 
diffusely within the parenchyma and in older animals can 
localize around senile plaques (e.g., Fig.  2; [113]). This 
distribution of AβOs as a halo around dense cores is well 
known (see, e.g., Fig. 12a). Another antibody-derived PET 
probe, using the 6E10 N-terminal directed Aβ antibody, 
was delivered intravenously and found capable of dis-
tinguishing AD mice from controls [118]. Use of probes 
based on antibodies has been extended to molecular MRI, 
which could provide better spatial resolution and safety 
than PET [147]. An AβO-targeted MRI probe has been 
developed using an AβO antibody coupled to a strong T2 
contrast agent [174]. These MRI–antibody probes, when 
delivered intranasally to bypass the blood brain barrier, can 
reach their hippocampal targets within 4 h and distinguish 
AD mice from controls (Fig.  12b). Diagnostic results are 
consistent with the therapeutic benefits found with intrana-
sal delivery of the same antibody [183].

Conclusion

Over the past 3 years, well over 1,000 papers have investi-
gated the hypothesis that nerve cell damage leading to Alz-
heimer’s dementia is instigated by toxic AβOs, a structural 
archetype that now appears relevant to dozens of diseases 
of fibrillogenic proteins. New results have substantiated 
earlier findings that persons with AD, as well as AD animal 
models, manifest the presence of toxic AβOs. Experiments 
with multiple in vitro and in vivo models have elucidated 
the broad pathogenic impact of AβOs, and they have pro-
vided significant advances into how cells are targeted and 
the mechanisms that lead to cell damage. The puzzle of 
disease-relevant AβO structure is being approached through 
application of powerful new technologies and the potential 
of targeting AβOs for early diagnostics and monitoring dis-
ease control is beginning to be broached. First insights are 
being garnered into the etiology of AβO buildup, which ulti-
mately may inform therapeutic strategies that couple the tar-
geting of AβOs to treatments tailored to etiological triggers. 
Multiple strategies are being explored that target AβOs for 
therapeutics, including development of AβO-specific anti-
bodies, toxin receptor antagonists, oligomerization block-
ers and disruptors, and enhanced neurotrophic signaling by 
behavioral modification as well as pharmacology.

These efforts reflect a widely held belief that AβOs pro-
vide a unifying molecular basis for the cause, diagnosis 
and treatment of AD. Nonetheless, there is no consensus of 
agreement concerning the AβO hypothesis. Proof demands 
that disease-modifying AD therapeutics be achieved by 

Fig. 12   Diagnostic assays for Aβ oligomer levels provide AβO-
relevant MRI signals in brain. a Sagittal brain sections, 50 µm thick, 
from 8-month-old 5xFAD and wt mice were probed with 568-NU4 
and counterstained with Thioflavin S. Image shows a 5xFAD corti-
cal region stained with both NU4 (red) and thioflavin S (green). NU4 
labeling is more abundant than the ThioS staining. Findings demon-
strate that NU4 labeling is often associated with, yet distinct from, 
amyloid plaques. Scale 25 µm. b In vivo imaging of NU4MNS dis-
tribution in live mice 4 h after intranasal inoculation shows labeling 
by the probe in the hippocampal region of the Tg mice, but not the wt 
controls. Scale bar 5 mm. c Higher magnification of the hippocampal 
region of the Tg and wt mice shows probe distribution 4 h after inoc-
ulation, the changes in distribution 96 h later, and the distribution of 
the target after re-administering the probe on Day 5. Data suggest that 
non oligomer-associated probe is clearing the brain. Scale bar 1 mm. 
Adapted from Viola et al. [174]
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targeting of toxic AβOs. This is a significant challenge, as 
has been discussed. While the new A4 and DIAN trials are 
promising in their design to treat patients before symptoms 
develop, what still is missing are trials that specifically tar-
get AβOs, the toxins that many investigators think are the 
true culprits.
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